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Abstract

Understanding and recognizing human—object interaction
(HOI) is a pivotal application in AR/VR and robotics. Re-
cent open-vocabulary HOI detection approaches depend ex-
clusively on large language models for richer textual prompts,
neglecting their inherent 3D spatial understanding capabil-
ities. To address this shortcoming, we introduce HOID-
R1, the first HOI detection framework that integrates chain-
of-thought (CoT) guided supervised fine-tuning (SFT) with
group relative policy optimization (GRPO) within a rein-
forcement learning (RL) paradigm. Specifically, we initially
apply SFT to imbue the model with essential reasoning ca-
pabilities, forcing the model to articulate its thought process
in the output. Subsequently, we integrate GRPO to lever-
age multi-reward signals for policy optimization, thereby
enhancing alignment across diverse modalities. To miti-
gate hallucinations in the CoT reasoning, we introduce an
”MLLM-as-a-judge” mechanism that supervises the CoT
outputs, further improving generalization. Extensive experi-
ments show that HOID-R1 achieves state-of-the-art perfor-
mance on HOI detection benchmarks and outperforms exist-
ing methods in open-world generalization to novel scenarios.

1 Introduction

Human-object interaction (HOI) detection seeks not only
to localize human and object instances in visual scenes, but
also to characterize the semantic and functional relationships
that define their interactions. As a foundational component
of human-centric Al, accurate HOI detection underpins a di-
verse range of downstream applications—among them dex-
terous assistive and collaborative robotics, immersive aug-
mented and virtual reality, surveillance and anomaly detec-
tion, advanced video understanding, and anticipatory activ-
ity forecasting. By modeling affordances, intentions, and so-
cial context, HOI detection endows autonomous agents with
the perceptual and reasoning capabilities required for safe,
effective operation in complex, human-populated environ-
ments.

Existing HOI detection methods are predominantly con-
fined to small-scale closed-set benchmarks (e.g., (Gao, Zou,
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Figure 1: Motivation. Closed-set HOI detectors fail to gen-
eralize to novel verbs, objects, or interaction combinations in
real scenes; adopting an open-world paradigm enables struc-
tured reasoning and semantic supervision for robust zero-
shot inference under free-form instructions.

and Huang 2018), (Liao et al. 2020)). In these benchmarks,
models are trained and evaluated on a fixed set of interaction
categories. This constraint yields limited out-of-distribution
generalization. When faced with novel verbs, unseen ob-
jects, or previously unobserved interaction combinations,
performance degrades sharply.

Recent work has begun to exploit large vision language
models to generate richer interaction prompts and enable
zero-shot inference (e.g., (Ning et al. 2023)). These prompt-
based methods leverage only the linguistic priors of the
underlying model and largely ignore its inherent reason-
ing capabilities. As a result, they remain sensitive to the
precise phrasing of queries and struggle to disambiguate
fine-grained or underspecified interactions. In contrast, our
framework applies supervised fine-tuning followed by tar-
geted post-training to fully harness the model’s reasoning
power. The resulting open world HOI detector generalizes
robustly across novel verbs, unseen objects, and fuzzy natu-
ral language queries.

To address these challenges, we propose HOID-R1, an
open-world HOI detection framework that integrates multi-
stage reasoning, visual grounding, and policy learning un-



der continual semantic supervision. Given an input image
and a free-form language query, our reasoning module pro-
duces a structured chain of thought(Kojima et al. 2023),(Wei
et al. 2023) comprising sequential hypotheses about poten-
tial human-object interactions, while a parallel segmenta-
tion module localizes regions relevant to the task in the
visual scene. These symbolic cues and pixel-level signals
are then combined by a policy model trained with Gener-
alized Reward Policy Optimization to generate spatial co-
ordinates and interaction labels. During training, multiple
reward functions assess physical plausibility, spatial con-
sistency, and task accuracy, and a collection of vision lan-
guage models acting as multimodal judges provides iterative
feedback on intermediate reasoning steps. This supervision
mechanism leverages the reasoning capacity of large-scale
vision language models to identify and correct hallucinated
or unsupported chains of thought trajectories, ensuring that
every inference is grounded in both visual evidence and lin-
guistic context. As a result, HOID-R1 achieves robust open
vocabulary generalization and maintains high accuracy on
novel verbs, unseen objects, and underspecified queries in
real-world HOI scenarios.
In summary, our contributions are as follows:

¢ The first RL-based Chain-of-Thought framework for
HOI detection. We introduce the first reinforcement
learning paradigm that integrates a chain-of-thought rea-
soning process directly into HOI detection, enabling the
model to decompose complex interaction queries into a
sequence of sub-reasoning steps and learn to optimize
each step via policy gradient.

* Open-World HOI detection reasoning and multi-level
dataset. Through supervised fine-tuning and GRPO-
based post-training of the VLM, our model acquires
Open-World human-object interaction reasoning capa-
bilities and demonstrates strong generalization to open-
vocabulary instructions and unseen images. To rigor-
ously evaluate its open-world generalization, we hierar-
chically annotated a new HOI detection dataset

* MLLM-as-a-Judge for chain-of-thought process. We
leverage a pre-trained 3D multimodal large language
model as a soft “judge” to evaluate and guide each rea-
soning step, preventing the model from arriving at cor-
rect conclusions through flawed reasoning processes. We
have enhanced its reasoning capabilities.

« State-of-the-art performance. Extensive experiments
on HICO-DET and SWIG-HOI show that our approach
outperforms existing baselines by a significant margin
across all key metrics, achieving new state-of-the-art re-
sults in both seen- and unseen-object HOI detection.

2 Related Work
2.1 HOI Detection

Current HOI detection methods can be mainly divided into
two categories: two-stage paradigm(Gao, Zou, and Huang
2018),(Cao et al. 2023) and one-stage paradigm(Kim et al.
2023),(Liao et al. 2020),(Chen et al. 2021),(Tamura, Ohashi,
and Yoshinaga 2021). Two-stage strategy first detects all

human and object instances using a pre-trained object de-
tector, such as Faster R-CNN(Gao, Zou, and Huang 2018),
followed by a second-stage module that enumerates possi-
ble human-object pairs and predicts their interactions. Al-
though this design benefits from the maturity and robust-
ness of standalone object detectors, it suffers from the inef-
ficiency of exhaustive pairwise matching and limited ability
to model contextual dependencies among entities. In con-
trast, one-stage approach detects (human-object-interaction)
triplets directly through different perspectives, e.g., point-
based detection(Liao et al. 2020) formulates HOI triplets
as pairs of keypoints, such as the center points of human
and object bounding boxes, and each interaction is mod-
eled by predicting a pair of spatial points along with verb
classification, anchor-based detection(Kim et al. 2023) ex-
tends the concept of anchor boxes from object detection
to interaction modeling, human and object entities are pre-
dicted based on predefined anchor regions, and interactions
are inferred using features extracted from the union area of
the predicted boxes and set prediction methods(Chen et al.
2021),(Tamura, Ohashi, and Yoshinaga 2021) reformulate
the HOI detection problem as a set-to-set matching problem,
thus avoiding human-object pairing.

2.2 Large Reasoning Model

Unlike traditional LLMs, which can only take textual in-
puts, Multimodal Large Language Models (MLLMs) extend
the capabilities of traditional large language models by inte-
grating information from multiple modalities, such as text,
images, audio, and video. By jointly modeling cross-modal
interactions, MLLMs enable a wide range of tasks, includ-
ing visual question answering, image captioning, and multi-
modal reasoning. The emergence of Large Reasoning Mod-
els (LRMs)(DeepSeek-Al et al. 2025),(Shao et al. 2024),(Li
et al. 2025a),(Ouyang et al. 2025),(Shen et al. 2025), which
are explicitly designed to enhance reasoning capabilities
beyond language generation. One prominent example is
Deepseek R1, a reasoning-centric model that integrates both
pretraining on reasoning-oriented data and instruction tun-
ing to excel at tasks requiring systematic thought. Compared
to traditional LLMs, LRMs like R1 are better at decompos-
ing complex problems, following long-term logical chains,
and aligning intermediate steps with final outputs. LRMs
have now being used in many topics: in motion generation
tasks(Ouyang et al. 2025), LRMs can reasoning over tem-
poral sequences and physical constraints, thus synthesize
realistic and controllable human motion trajectories from
abstract instructions or sparse keyframes, in computer vi-
sion(Shen et al. 2025), VLM-R1 demonstrates strong gener-
alization across diverse tasks such as visual question answer-
ing, image captioning, and referring expression comprehen-
sion and also by modeling multi-entity interactions through
structured reasoning, LRMs can better capture the semantic
dependencies between humans, objects, and actions in HOI
detection tasks(Li et al. 2025a).

3 Method

We propose a unified framework that integrates three com-
ponents. An HOI detection network learns to localize inter-
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Figure 2: Pipeline. HOID-R1 first encodes the input image and free-form query into multimodal embeddings and warms up
via SFT to generate chain-of-thought—annotated HOI triplets. During GRPO post-training, it samples candidate triplets, uses
an MLLM judge to compute a composite reward on format compliance, detection accuracy, interaction classification, and CoT
coherence, and updates the policy for precise localization and faithful reasoning.

actions and classify actions and objects using intersection-
over-union and classification rewards. A chain of thought
generator produces intermediate reasoning steps that are
scored by a Process Reward Model and a Generalizable Re-
ward Model to form a reasoning reward. A pretrained mul-
timodal LLM judge uses these two models to provide mixed
supervision at both individual steps and groups of steps. All
rewards are combined into a single objective and optimized
via reinforcement learning, yielding precise localization, ac-
curate classification, and coherent reasoning.

3.1 Supervised Fine-Tuning

To bridge the gap between general reasoning capabilities
and the structured requirements of HOI detection outputs,
we employ Supervised Fine-Tuning (SFT) as an essential
preparatory stage. Directly applying general-purpose rea-
soning models such as DeepSeek-R1 to HOI-related tasks
often leads to inconsistently formatted outputs, especially
when generating scene graph-style captions or structured in-
teraction tuples. To address this, we design an SFT stage
where the model is guided to adhere strictly to the desired
output format (e.g., (subject, verb, object) triplets(Chao
et al. 2018)), using curated demonstrations.

However, relying solely on rigid format supervision may
inadvertently suppress the model’s intrinsic reasoning abil-
ity, reducing it to pattern-matching instead of true infer-
ence. To counteract this, we introduce Cognitive Chain-of-
Thought (CoT)(Li et al. 2025b) prompting within the SFT
stage. Here, stepwise reasoning processes grounding them
in the visual input, and inferring their interaction, are explic-
itly annotated using special jthink; tags. This encourages
the model to internalize a cognitively grounded reasoning
procedure while still learning to output syntactically and se-
mantically structured HOI predictions. Empirically, this hy-
brid supervision strategy enhances both interpretability and
output consistency.

We impose task-specific constraints to reflect the domain
characteristics of HOI detection, we specifies the domain of
the thinking process: 1) human detection(the first entity of
the CoT is human); 2) object detection(the second entity is
restrict to objects); 3) relation existence(we tried to limit
the relation within several verbs). This guides the model
to focus its reasoning within a valid interaction space, re-
ducing hallucination and improving output faithfulness. Fur-
thermore, this constraint-aware design helps prevent overfit-
ting to idiosyncratic CoT patterns, ensuring better general-



ization across diverse scenes.

Empirically, this hybrid strategy—combining structured
format supervision with constrained yet expressive CoT rea-
soning—significantly improves both the interpretability and
consistency of HOI predictions.

3.2 MLLM-as-a-Judge

Large language models often produce correct final answers
while their intermediate reasoning contains semantic devia-
tions or logical flaws. To address this problem, we introduce
MLLM-as-a-Judge(Chen et al. 2024), which uses a pre-
trained multimodal large language model to provide mixed
supervision over the chain of thought generation.

Process Reward Model (PRM):The PRM assigns a
score or a binary judgment (“Is this step correct?”) at each
reasoning step in the generated CoT, and uses that as the
training signal to fine-tune the model. In other words, the
PRM provides correctness/incorrectness labels or scores for
every intermediate step, teaching the model to be reliable at
each stage of its reasoning.

Generalizable Reward Model (GRM):Building on
standard preference learning, the GRM additionally pre-
serves and regularizes the reward model’s generative abil-
ity—applying a language-modeling loss to its hidden
states—so that it can both evaluate the quality of reason-
ing and generate coherent intermediate steps like a language
model. This generative supervision significantly boosts the
reward model’s generalization to unseen tasks or out-of-
distribution samples.

During training, the student model’s generated reason-
ing chain is fed into the MLLM judge, which generates
step-level and generalizable feedback signals through PRM
and GRM, and combines these signals into a composite re-
ward within a reinforcement learning framework. By enforc-
ing constraints on the intermediate reasoning process, the
MLLM-as-a-Judge mechanism effectively suppresses ten-
dencies to arrive at correct outcomes through flawed logic,
thereby improving the reliability and interpretability of the
model’s reasoning.

3.3 Group Relative Policy Optimization

To optimize the R1 framework, the group relative policy
optimization is adopted. GRPO is a reinforcement learn-
ing (RL) algorithm designed for optimizing policy mod-
els. As proposed in DeepSeek-R1(DeepSeek-Al et al. 2025),
GRPO eliminates dependency on critic networks by leverag-
ing direct response comparisons within stochastically sam-
pled output groups. This approach reduces computational
overhead while maintaining optimization stability. The ob-
jective function of GRPO leverages direct pairwise compar-
isons within the sampled group through implicit reward nor-
malization. By using the group mean as a dynamic base-
line, it reduces gradient variance while maintaining opti-
mization stability. Crucially, it eliminates per-token value
estimation, cutting computational overhead by O(n) for se-
quence length n compared to critic-dependent methods:

G

A= é;min (pdi,clip(ps, 1 —e, 14+ €)4;) (1)

B = ﬁDKL(WOHﬂ-ref) (2)

Jarpo(0) = E; 0 (0 G o, [A — B] 3)
mp(0ilq)
0414 (0i10)
rent policy 7y and behavioral policy g, ,., € controls clip-
ping thresholds and g indicates the deviations via the KL
divergence term. The advantage score A; mitigates reward
scale sensitivity and reduces gradient variance, which can

standardize rewards to stabilize training:

where p; = quantifies policy shift between cur-

r; — mean({ry,...,7c}) @
Std({Tl, . Tc})
r; represents the reward for response o;. The KL Diver-

gence is defined to control exploration without too much di-
vergence from 7. ¢ as follows:
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Tref (0ilq) Tref (0ilq)
Drermlimed) = 2oy~ rtodg ) 71
Our reward design generally consists of four parts: Format
Reward, Detection Reward, Interaction Reward, and CoT
Reward.
Format Reward This reward is designed to restrict the
reasoning template format: Thus, the reward design is:

1 if o;,format is right
0 otherwise

T format (Oi) = { 6)
This binary function thus enforces format requirements on
syntax while granting flexibility in content.

Detection Reward Inspired by established object de-
tection practices, we devise the sample-level IoU score
Riou and the sample-level regression accuracy R in
the predicted anchor boxes for each sample(Carion et al.
2020),(Ren et al. 2016). The former measures the fraction
of anchors whose Intersection over Union with their ground-
truth boxes reaches or exceeds 0.5; the latter measures the
fraction of anchors whose normalized L1 coordinate error
falls below a threshold §. Specifically, an anchor prediction
is deemed correct if:

* Overlap Accuracy The predicted anchor box achieves
an Intersection over Union of at least 0.5 with its ground-
truth counterpart.

* Coordinate Precision The normalized L1 distance be-
tween predicted and ground-truth box coordinates is be-
low the threshold 4.

The final detection reward is computed as a weighted
combination of these two metrics:

Tdet(o) =B Riou + (]- - B) ) Rregv )

where [ balances the trade-off between overlap accuracy
and coordinate precision.
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Table 1: Main Result on HICO-DET.

Interaction Reward:Inspired by established classifica-
tion practices, we define the sample-level action accuracy
Race and the sample-level object accuracy R,p; for each
sample. The first metric measures the fraction of samples
whose predicted action label matches the ground truth ac-
tion. The second metric measures the fraction of samples
whose predicted object label matches the ground truth ob-
ject. Specifically, an interaction prediction is correct if:

* Action Correctness: The model’s predicted action label
(for example “pick up”, “pour”, or “rotate”) must match
the ground truth action label exactly. A sample is counted
as an action correct only when the predicted category cor-

responds to the annotated category.

* Object Correctness: The model’s predicted object label
(for example “cup”, “bottle”, or “book”) must match the
ground truth object label exactly. A sample is considered
object correct only when the predicted name aligns with
the annotated object name unambiguously.

The final interaction reward is computed as a weighted
combination of these two metrics:

rint(o) =7 Ract + (1 - ’Y) . Robja (8)

where ~y balances the importance of action correctness and
object correctness.

CoT Reward To encourage both fine-grained relevance
and high-level coherence in the model’s intermediate rea-
soning(Wang et al. 2023), we design a Chain-of-Thought re-
ward rcor that integrates two complementary signals:

¢ Process Reward Model (PRM). (Wang et al. 2025) Let
N be the number of steps in the generated CoT, and let

s; € [0,1] be the PRM score for step i. We define the
step-level reward

1 N
Rpem = 52 ) 5i- ©)
=1

e Generalizable Reward Model (GRM). Partition the
chain into M groups of consecutive steps, and let g; €
[0,1] be the GRM score for group j(Ouyang et al.
2022),(Rafailov et al. 2024). We define the group-level
reward

1 M
RWZM;% (10)

These two signals are combined into a single scalar re-
ward:
TCoT = )\Rprm + (]- - )\) Rgrm7 (11)

where A € [0, 1] balances the emphasis between step-level
accuracy and group-level coherence.

By optimizing this reward within a reinforcement learn-
ing framework, the model is encouraged to produce reason-
ing trajectories that are both semantically aligned with the
prompt and logically coherent throughout.

4 [Experiments

Our model is trained in two phases: (1) supervised fine-
tuning on human—object interaction data; and (2) post-
training using GRPO. We employ diverse datasets and eval-
uation metrics to assess our approach, demonstrating its ca-
pability to detect HOI under high-level instructions in both
seen and unseen scenarios. Comparative experiments and
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Table 2: Main Result on SWIG-HOI.

ablation studies validate our design choices. All experiments
are conducted on eight NVIDIA A800 GPUs.

4.1 Dataset

In our experiments, we selected two of the most commonly
used benchmark datasets in the human-object interaction
(HOI) detection field and re-annotated them.

HICO-DET(Chao et al. 2015) HICO-DET includes
47,776 images (38,118 for training, 9,658 for testing) anno-
tated with 600 HOI categories formed by 117 verb classes
and 80 object classes, totaling over 150,000 human—object
pairs. Following standard zero-shot protocols, 120 of the
rarest interaction triplets are withheld during training to as-
sess a model’s ability to recognize unseen images

SWIG-HOI(Pratt et al. 2020) Assembled from the
SWIG and DOH datasets, SWIG-HOI comprises roughly
45,000 training images and 14,000 test images, covering
406 human actions and 1,000 object categories. Its test split
contains about 5,500 human—object interaction instances, of
which nearly 1,800 interactions are not seen during train-
ing, making it a challenging benchmark for open-vocabulary
HOI detection

We annotate two datasets using three distinct schemes:
fine-grained annotation, precise annotation, and open-
vocabulary annotation. Each successive scheme places in-
creasingly greater demands on the model’s generalization
capabilities.

* Fine-grained annotation: accurately describing the di-
verse attributes and actions of the people and objects de-
picted in the image. (e.g., ”A man wearing black clothes
is drinking a blue cup of water”)

riding boat driving car holding cup carrying carrot

Figure 3: Qualitative result.More Qualitative results in the
Appendix.

* Precise annotation: describing only the interactive ac-
tions and object depicted in the image. (e.g., A man is
drinking water”)

* Open-vocabulary annotation: providing only an open-
ended description of the person or object in the image
(e.g., “What is the man doing?”, “What action is the cup
performing?”), or posing a broad query (e.g., “What is
happening in the image?”).

In addition, we partition the images into seen and unseen
subsets and evaluate our method on each. The results show
that our model achieves state-of-the-art performance across
all six experimental settings defined by the three annotation
schemes. Notably, it demonstrates strong generalization un-
der open-vocabulary annotation on unseen images.



Model Seen Unseen
H-mIOU} O-mIOU} A-ACCt mAPt H-mIOUt O-mIOU} A-ACCT  mAPt

Open-Vocabulary annotation

W/O PT 0.54i04017 0'53i0.018 0.57i0.021 39'3411.92 0'54i0.016 0.53i0.019 0'57i0.023 37'74i1.75
W/O FR 059:‘:0.020 0.62i0'025 0.67i0'031 4394:‘:1.85 0.61i0'019 0.60i0'020 0.62i0'029 4291:‘:1.68
W/O DR 0.60i0‘022 0.60i0'019 0.65i0'030 45.2312.14 0.58i0‘021 0.58i0'018 0.64i0‘027 43.89i1‘96
W/O IR 0_62:t0.023 0.62i0'022 0.64i0'026 44.18i2'20 0.61i0'022 0_60:|:0.020 0.64i0'028 4435:‘:2.03
W/O CoTR 0.60i0‘018 0.64i0‘022 0.65i0'029 45.3512.15 0.6li0‘018 O.60i0'021 0.64i0'025 43'97i1.79
Ours 0_69:i:0.024 0.71:i:0.027 0_75:i:0.032 51.68i2'36 0_68:i:0.023 0.68i0'022 0_72:|:0.030 50_03:t2.14

Table 3: Ablation study on HICO-DET of Open-Vocabulary annotations.

4.2 Evaluation metric

To accurately assess our model’s performance, we adopt
four evaluation metrics distilled from prior work.

¢ H-mIOU This metric is used to compute the mean Inter-
section over Union between the predicted person bound-
ing boxes and the ground-truth.

¢ O-mIOU This metric calculates the mean Intersection
over Union (mloU) between the predicted object bound-
ing boxes and their ground-truth.

* A-ACC This metric computes the probability of success-
fully predicting the interaction action.

e mAP A detection is deemed successful when both H-
mloU and O-mloU exceed 0.5, and this metric measures
the corresponding success rate.

Higher H-mIOU, O-mIOU, A-ACC and mAP mean pow-
erful detection and reasoning ability of the method

4.3 Main Result

Compare to SOTA method We evaluate the four metrics
on seen and unseen images from both datasets under all
three annotation schemes, comparing our approach with re-
cent state-of-the-art methods (e.g., HOI-Trans (Zou et al.
2021), DiffHOI(Yang et al. 2023), PAFR(Wu et al. 2024),
HORP(Geng, Yang, and Zhang 2025)). The results are sum-
marized in Tables 1 and 2.

Experimental results demonstrate that our model achieves
state-of-the-art performance across all evaluation metrics.
By leveraging the combined strengths of supervised fine-
tuning and GRPO-based post-training, our approach exhibits
robust open-world generalization, especially for combina-
tions of open-vocabulary descriptions and unseen images.

Qualitative results We present visualized results that
demonstrate our model’s open-world generalization capabil-
ities with Figure 3, showing strong performance under open-
vocabulary descriptions on unseen images. More Qualitative
results in the Appendix.

4.4 Ablation Study

We perform ablation studies on the open-vocabulary annota-
tions of the HICO-DET dataset to examine the contribution
of each component to open-world HOI detection. The de-
tailed results are presented in Table 3.

W/O Post-training(W/O PT). We remove the GRPO-
based post-training stage, which leads to a substantial drop
in all four evaluation metrics. Without this reinforcement-
learning fine-tuning, the model cannot leverage the multi-
reward signals to refine its policy beyond the super-
vised fine-tuning stage, resulting in poorer localization (H-
mlIOU/O-mIOU) and degraded detection and action classifi-
cation accuracy.

W/O Format Reward(W/O FR). We omit the format
compliance reward, causing the model to generate HOI pre-
dictions with inconsistent or malformed (subject, verb, ob-
ject) structures. Without this binary constraint, syntactic er-
rors proliferate-missing tags, malformed tuples, and irregu-
lar delimiters-which in turn disrupt downstream parsing and
degrade overall performance.

W/O Detection Reward(W/O DR). We disable the de-
tection reward (RIoU and Rreg), removing the incentive
for precise bounding-box overlap and coordinate accuracy.
Consequently, both H-mIOU and O-mIOU suffer significant
declines, leading to lower mAP as the model neglects fine-
grained localization in favor of other objectives. This shows
that the detection reward is indispensable for driving accu-
rate spatial predictions.

W/O Interaction Reward(W/O IR). We turn off the in-
teraction reward, so the model no longer receives feedback
on correct action and object classification. As a result, A-
ACC drops markedly, with the model frequently mislabeling
verbs or objects despite reasonable bounding boxes. This in-
dicates that the interaction reward is crucial for aligning the
model’s predictions with the semantic ground truth.

W/O CoT Reward(W/O CoTR). We remove the chain-
of-thought reward, preventing optimization of the reasoning
quality and coherence. The generated reasoning chains be-
come semantically misaligned with the input prompt and
logically disjointed across steps, leading to more hallucina-
tions and less interpretable intermediate outputs. This vali-
dates that the CoT reward is vital for ensuring semantically
meaningful and logically coherent reasoning trajectories.

5 Conclusion

This work presents HOID-R1, a unified framework for open-
world human—object interaction detection that integrates
chain-of-thought supervised fine-tuning with Group Rela-
tive Policy Optimization. By enforcing structured output for-



mats and employing an MLLM-based judge to supervise in-
termediate reasoning, the approach mitigates hallucinations
and grounds predictions in meaningful affordance cues. Ex-
tensive evaluations on HICO-DET and SWIG-HOI demon-
strate that HOID-R1 outperforms existing methods in both
seen and unseen settings under open-vocabulary evaluation,
while ablation studies confirm the contribution of each com-
ponent. Future research will focus on enhancing computa-
tional efficiency, extending the framework to video-based
HOI detection for improved temporal coherence.
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